On the rigidity of certain Pham-Brieskorn rings

التفاصيل البيبلوغرافية
العنوان: On the rigidity of certain Pham-Brieskorn rings
المؤلفون: Chitayat, Michael, Daigle, Daniel
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Commutative Algebra, Mathematics - Algebraic Geometry, 13N15, 14R20, 14R05 (Primary)
الوصف: Fix a field $k$ of characteristic zero. If $a_1, ..., a_n$ ($n>2$) are positive integers, the integral domain $B = k[X_1, ..., X_n] / ( X_1^{a_1} + ... + X_n^{a_n} )$ is called a Pham-Brieskorn ring. It is conjectured that if $a_i > 1$ for all $i$ and $a_i=2$ for at most one $i$, then $B$ is rigid. (A ring $B$ is said to be rigid if the only locally nilpotent derivation $D: B \to B$ is the zero derivation.) We give partial results towards the conjecture.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1907.13259
رقم الانضمام: edsarx.1907.13259
قاعدة البيانات: arXiv