التفاصيل البيبلوغرافية
العنوان: |
On the rigidity of certain Pham-Brieskorn rings |
المؤلفون: |
Chitayat, Michael, Daigle, Daniel |
سنة النشر: |
2019 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Commutative Algebra, Mathematics - Algebraic Geometry, 13N15, 14R20, 14R05 (Primary) |
الوصف: |
Fix a field $k$ of characteristic zero. If $a_1, ..., a_n$ ($n>2$) are positive integers, the integral domain $B = k[X_1, ..., X_n] / ( X_1^{a_1} + ... + X_n^{a_n} )$ is called a Pham-Brieskorn ring. It is conjectured that if $a_i > 1$ for all $i$ and $a_i=2$ for at most one $i$, then $B$ is rigid. (A ring $B$ is said to be rigid if the only locally nilpotent derivation $D: B \to B$ is the zero derivation.) We give partial results towards the conjecture. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/1907.13259 |
رقم الانضمام: |
edsarx.1907.13259 |
قاعدة البيانات: |
arXiv |