REBEC: Robust Evolutionary-based Calibration Approach for the Numerical Wind Wave Model

التفاصيل البيبلوغرافية
العنوان: REBEC: Robust Evolutionary-based Calibration Approach for the Numerical Wind Wave Model
المؤلفون: Vychuzhanin, Pavel, Nikitin, Nikolay O., Kalyuzhnaya, Anna V.
سنة النشر: 2019
المجموعة: Computer Science
Physics (Other)
Statistics
مصطلحات موضوعية: Computer Science - Neural and Evolutionary Computing, Computer Science - Machine Learning, Physics - Atmospheric and Oceanic Physics, Statistics - Machine Learning
الوصف: The adaptation of numerical wind wave models to the local time-spatial conditions is a problem that can be solved by using various calibration techniques. However, the obtained sets of physical parameters become over-tuned to specific events if there is a lack of observations. In this paper, we propose a robust evolutionary calibration approach that allows to build the stochastic ensemble of perturbed models and use it to achieve the trade-off between quality and robustness of the target model. The implemented robust ensemble-based evolutionary calibration (REBEC) approach was compared to the baseline SPEA2 algorithm in a set of experiments with the SWAN wind wave model configuration for the Kara Sea domain. Provided metrics for the set of scenarios confirm the effectiveness of the REBEC approach for the majority of calibration scenarios.
نوع الوثيقة: Working Paper
DOI: 10.1007/978-3-030-22734-0_45
URL الوصول: http://arxiv.org/abs/1906.08587
رقم الانضمام: edsarx.1906.08587
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/978-3-030-22734-0_45