Report
Multi-time distribution in discrete polynuclear growth
العنوان: | Multi-time distribution in discrete polynuclear growth |
---|---|
المؤلفون: | Johansson, Kurt, Rahman, Mustazee |
المصدر: | Comm. Pure Appl. Math. 74 (2021), 2561-2627 |
سنة النشر: | 2019 |
المجموعة: | Mathematics Condensed Matter Mathematical Physics |
مصطلحات موضوعية: | Mathematics - Probability, Condensed Matter - Statistical Mechanics, Mathematical Physics |
الوصف: | We study the multi-time distribution in a discrete polynuclear growth model or, equivalently, in directed last-passage percolation with geometric weights. A formula for the joint multi-time distribution function is derived in the discrete setting. It takes the form of a multiple contour integral of a block Fredholm determinant. The asymptotic multi-time distribution is then computed by taking the appropriate KPZ-scaling limit of this formula. This distribution is expected to be universal for models in the Kardar-Parisi-Zhang universality class. Comment: final version with minor corrections and additional references |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1906.01053 |
رقم الانضمام: | edsarx.1906.01053 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |