Multi-time distribution in discrete polynuclear growth

التفاصيل البيبلوغرافية
العنوان: Multi-time distribution in discrete polynuclear growth
المؤلفون: Johansson, Kurt, Rahman, Mustazee
المصدر: Comm. Pure Appl. Math. 74 (2021), 2561-2627
سنة النشر: 2019
المجموعة: Mathematics
Condensed Matter
Mathematical Physics
مصطلحات موضوعية: Mathematics - Probability, Condensed Matter - Statistical Mechanics, Mathematical Physics
الوصف: We study the multi-time distribution in a discrete polynuclear growth model or, equivalently, in directed last-passage percolation with geometric weights. A formula for the joint multi-time distribution function is derived in the discrete setting. It takes the form of a multiple contour integral of a block Fredholm determinant. The asymptotic multi-time distribution is then computed by taking the appropriate KPZ-scaling limit of this formula. This distribution is expected to be universal for models in the Kardar-Parisi-Zhang universality class.
Comment: final version with minor corrections and additional references
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1906.01053
رقم الانضمام: edsarx.1906.01053
قاعدة البيانات: arXiv