AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles

التفاصيل البيبلوغرافية
العنوان: AdaNet: A Scalable and Flexible Framework for Automatically Learning Ensembles
المؤلفون: Weill, Charles, Gonzalvo, Javier, Kuznetsov, Vitaly, Yang, Scott, Yak, Scott, Mazzawi, Hanna, Hotaj, Eugen, Jerfel, Ghassen, Macko, Vladimir, Adlam, Ben, Mohri, Mehryar, Cortes, Corinna
سنة النشر: 2019
المجموعة: Computer Science
Statistics
مصطلحات موضوعية: Computer Science - Machine Learning, Statistics - Machine Learning
الوصف: AdaNet is a lightweight TensorFlow-based (Abadi et al., 2015) framework for automatically learning high-quality ensembles with minimal expert intervention. Our framework is inspired by the AdaNet algorithm (Cortes et al., 2017) which learns the structure of a neural network as an ensemble of subnetworks. We designed it to: (1) integrate with the existing TensorFlow ecosystem, (2) offer sensible default search spaces to perform well on novel datasets, (3) present a flexible API to utilize expert information when available, and (4) efficiently accelerate training with distributed CPU, GPU, and TPU hardware. The code is open-source and available at: https://github.com/tensorflow/adanet.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1905.00080
رقم الانضمام: edsarx.1905.00080
قاعدة البيانات: arXiv