Report
Locally solvable and solvable-by-finite maximal subgroups of $GL_n(D)$
العنوان: | Locally solvable and solvable-by-finite maximal subgroups of $GL_n(D)$ |
---|---|
المؤلفون: | Khanh, Huynh Viet, Hai, Bui Xuan |
المصدر: | Publicacions Matem\`atiques (2022) |
سنة النشر: | 2019 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Rings and Algebras, 12E15, 16K20, 16K40, 20E25 |
الوصف: | This paper aims at studying solvable-by-finite and locally solvable maximal subgroups of an almost subnormal subgroup of the general skew linear group $\GL_n(D)$ over a division ring $D$. It turns out that in the case where $D$ is non-commutative, if such maximal subgroups exist, then either it is abelian or $[D:F]<\infty$. Also, if $F$ is an infinite field and $n\geq 5$, then every locally solvable maximal subgroup of a normal subgroup of $\GL_n(F)$ is abelian. Comment: Accepted for publication in Publicacions Matem\`atiques (UAB) |
نوع الوثيقة: | Working Paper |
DOI: | 10.5565/PUBLMAT6612203 |
URL الوصول: | http://arxiv.org/abs/1903.10868 |
رقم الانضمام: | edsarx.1903.10868 |
قاعدة البيانات: | arXiv |
DOI: | 10.5565/PUBLMAT6612203 |
---|