Locally solvable and solvable-by-finite maximal subgroups of $GL_n(D)$

التفاصيل البيبلوغرافية
العنوان: Locally solvable and solvable-by-finite maximal subgroups of $GL_n(D)$
المؤلفون: Khanh, Huynh Viet, Hai, Bui Xuan
المصدر: Publicacions Matem\`atiques (2022)
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Rings and Algebras, 12E15, 16K20, 16K40, 20E25
الوصف: This paper aims at studying solvable-by-finite and locally solvable maximal subgroups of an almost subnormal subgroup of the general skew linear group $\GL_n(D)$ over a division ring $D$. It turns out that in the case where $D$ is non-commutative, if such maximal subgroups exist, then either it is abelian or $[D:F]<\infty$. Also, if $F$ is an infinite field and $n\geq 5$, then every locally solvable maximal subgroup of a normal subgroup of $\GL_n(F)$ is abelian.
Comment: Accepted for publication in Publicacions Matem\`atiques (UAB)
نوع الوثيقة: Working Paper
DOI: 10.5565/PUBLMAT6612203
URL الوصول: http://arxiv.org/abs/1903.10868
رقم الانضمام: edsarx.1903.10868
قاعدة البيانات: arXiv