On some classes of irreducible polynomials

التفاصيل البيبلوغرافية
العنوان: On some classes of irreducible polynomials
المؤلفون: Gutierrez, Jaime, Urroz, Jorge Jimenez
سنة النشر: 2019
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Symbolic Computation
الوصف: The aim of the paper is to produce new families of irreducible polynomials, generalizing previous results in the area. One example of our general result is that for a near-separated polynomial, i.e., polynomials of the form $F(x,y)=f_1(x)f_2(y)-f_2(x)f_1(y)$, then $F(x,y)+r$ is always irreducible for any constant $r$ different from zero. We also provide the biggest known family of HIP polynomials in several variables. These are polynomials $p(x_1,\ldots,x_n) \in K[x_1,\ldots,x_n]$ over a zero characteristic field $K$ such that $p(h_1(x_1),\ldots,h_n(x_n))$ is irreducible over $K$ for every $n$-tuple $h_1(x_1),\ldots,h_n(x_n)$ of non constant one variable polynomials over $K$. The results can also be applied to fields of positive characteristic, with some modifications.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1903.08441
رقم الانضمام: edsarx.1903.08441
قاعدة البيانات: arXiv