التفاصيل البيبلوغرافية
العنوان: |
Universal Surgery Problems with Trivial Lagrangian |
المؤلفون: |
Freedman, Michael, Krushkal, Vyacheslav |
المصدر: |
Math. Res. Lett. 26 (2019), 1587-1601 |
سنة النشر: |
2019 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Geometric Topology |
الوصف: |
We study the effect of Nielsen moves and their geometric counterparts, handle slides, on good boundary links. A collection of links, universal for 4-dimensional surgery, is shown to admit Seifert surfaces with trivial Lagrangian. They are good boundary links, with Seifert matrices of a more general form than in known constructions of slice links. We show that a certain more restrictive condition on Seifert matrices is sufficient for proving the links are slice. We also give a correction of a Kirby calculus identity in \cite{FK2}, useful for constructing surgery kernels associated to link-slice problems. |
نوع الوثيقة: |
Working Paper |
DOI: |
10.4310/MRL.2019.v26.n6.a2 |
URL الوصول: |
http://arxiv.org/abs/1901.05951 |
رقم الانضمام: |
edsarx.1901.05951 |
قاعدة البيانات: |
arXiv |