Universal Surgery Problems with Trivial Lagrangian

التفاصيل البيبلوغرافية
العنوان: Universal Surgery Problems with Trivial Lagrangian
المؤلفون: Freedman, Michael, Krushkal, Vyacheslav
المصدر: Math. Res. Lett. 26 (2019), 1587-1601
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Geometric Topology
الوصف: We study the effect of Nielsen moves and their geometric counterparts, handle slides, on good boundary links. A collection of links, universal for 4-dimensional surgery, is shown to admit Seifert surfaces with trivial Lagrangian. They are good boundary links, with Seifert matrices of a more general form than in known constructions of slice links. We show that a certain more restrictive condition on Seifert matrices is sufficient for proving the links are slice. We also give a correction of a Kirby calculus identity in \cite{FK2}, useful for constructing surgery kernels associated to link-slice problems.
نوع الوثيقة: Working Paper
DOI: 10.4310/MRL.2019.v26.n6.a2
URL الوصول: http://arxiv.org/abs/1901.05951
رقم الانضمام: edsarx.1901.05951
قاعدة البيانات: arXiv
الوصف
DOI:10.4310/MRL.2019.v26.n6.a2