A characterization of generalized exponential polynomials in terms of decomposable functions

التفاصيل البيبلوغرافية
العنوان: A characterization of generalized exponential polynomials in terms of decomposable functions
المؤلفون: Laczkovich, Miklos
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Classical Analysis and ODEs
الوصف: Let $G$ be a topological commutative semigroup with unit. We prove that a continuous function $f\colon G\to \cc$ is a generalized exponential polynomial if and only if there is an $n\ge 2$ such that $f(x_1 +\ldots +x_n )$ is decomposable; that is, if $f(x_1 +\ldots +x_n )=\sumik u_i \cd v_i$, where the function $u_i$ only depends on the variables belonging to a set $\emp \ne E_i \subsetneq \{ x_1 \stb x_n \}$, and $v_i$ only depends on the variables belonging to $\{ x_1 \stb x_n \} \se E_i$ $(i=1\stb k)$.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1812.06434
رقم الانضمام: edsarx.1812.06434
قاعدة البيانات: arXiv