Report
Periodic triangulations of $\mathbb{Z}^n$
العنوان: | Periodic triangulations of $\mathbb{Z}^n$ |
---|---|
المؤلفون: | Sikirić, Mathieu Dutour, Garber, Alexey |
المصدر: | Electronic J. Comb, 27:2 (2020), P2.36 |
سنة النشر: | 2018 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics, Mathematics - Metric Geometry |
الوصف: | We consider in this work triangulations of $\mathbb{Z}^n$ that are periodic along $\mathbb{Z}^n$. They generalize the triangulations obtained from Delaunay tessellations of lattices. Other important property is the regularity and central-symmetry property of triangulations. Full enumeration for dimension at most $4$ is obtained. In dimension $5$ several new phenomena happen: there are centrally-symmetric triangulations that are not Delaunay, there are non-regular triangulations (it could happen in dimension $4$) and a given simplex has a priori an infinity of possible adjacent simplices. We found $950$ periodic triangulations in dimension $5$ but finiteness is unknown. |
نوع الوثيقة: | Working Paper |
DOI: | 10.37236/8298 |
URL الوصول: | http://arxiv.org/abs/1810.10911 |
رقم الانضمام: | edsarx.1810.10911 |
قاعدة البيانات: | arXiv |
ResultId |
1 |
---|---|
Header |
edsarx arXiv edsarx.1810.10911 981 3 Report report 981.457214355469 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.1810.10911&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/1810.10911 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Periodic triangulations of $\mathbb{Z}^n$
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Sikirić%2C+Mathieu+Dutour%22">Sikirić, Mathieu Dutour</searchLink><br /><searchLink fieldCode="AR" term="%22Garber%2C+Alexey%22">Garber, Alexey</searchLink> ) Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Electronic J. Comb, 27:2 (2020), P2.36 ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2018 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Combinatorics%22">Mathematics - Combinatorics</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Metric+Geometry%22">Mathematics - Metric Geometry</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We consider in this work triangulations of $\mathbb{Z}^n$ that are periodic along $\mathbb{Z}^n$. They generalize the triangulations obtained from Delaunay tessellations of lattices. Other important property is the regularity and central-symmetry property of triangulations. Full enumeration for dimension at most $4$ is obtained. In dimension $5$ several new phenomena happen: there are centrally-symmetric triangulations that are not Delaunay, there are non-regular triangulations (it could happen in dimension $4$) and a given simplex has a priori an infinity of possible adjacent simplices. We found $950$ periodic triangulations in dimension $5$ but finiteness is unknown. ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper ) Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.37236/8298 ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/1810.10911" linkWindow="_blank">http://arxiv.org/abs/1810.10911</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.1810.10911 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Identifiers] => Array
(
[0] => Array
(
[Type] => doi
[Value] => 10.37236/8298
)
)
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Mathematics - Combinatorics
[Type] => general
)
[1] => Array
(
[SubjectFull] => Mathematics - Metric Geometry
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Periodic triangulations of $\mathbb{Z}^n$
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Sikirić, Mathieu Dutour
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Garber, Alexey
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 25
[M] => 10
[Type] => published
[Y] => 2018
)
)
)
)
)
)
)
|
IllustrationInfo |