Periodic triangulations of $\mathbb{Z}^n$

التفاصيل البيبلوغرافية
العنوان: Periodic triangulations of $\mathbb{Z}^n$
المؤلفون: Sikirić, Mathieu Dutour, Garber, Alexey
المصدر: Electronic J. Comb, 27:2 (2020), P2.36
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, Mathematics - Metric Geometry
الوصف: We consider in this work triangulations of $\mathbb{Z}^n$ that are periodic along $\mathbb{Z}^n$. They generalize the triangulations obtained from Delaunay tessellations of lattices. Other important property is the regularity and central-symmetry property of triangulations. Full enumeration for dimension at most $4$ is obtained. In dimension $5$ several new phenomena happen: there are centrally-symmetric triangulations that are not Delaunay, there are non-regular triangulations (it could happen in dimension $4$) and a given simplex has a priori an infinity of possible adjacent simplices. We found $950$ periodic triangulations in dimension $5$ but finiteness is unknown.
نوع الوثيقة: Working Paper
DOI: 10.37236/8298
URL الوصول: http://arxiv.org/abs/1810.10911
رقم الانضمام: edsarx.1810.10911
قاعدة البيانات: arXiv
ResultId 1
Header edsarx
arXiv
edsarx.1810.10911
981
3
Report
report
981.457214355469
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.1810.10911&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/1810.10911 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Periodic triangulations of $\mathbb{Z}^n$ )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Sikirić%2C+Mathieu+Dutour%22">Sikirić, Mathieu Dutour</searchLink><br /><searchLink fieldCode="AR" term="%22Garber%2C+Alexey%22">Garber, Alexey</searchLink> )
Array ( [Name] => TitleSource [Label] => Source [Group] => Src [Data] => Electronic J. Comb, 27:2 (2020), P2.36 )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2018 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Combinatorics%22">Mathematics - Combinatorics</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Metric+Geometry%22">Mathematics - Metric Geometry</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We consider in this work triangulations of $\mathbb{Z}^n$ that are periodic along $\mathbb{Z}^n$. They generalize the triangulations obtained from Delaunay tessellations of lattices. Other important property is the regularity and central-symmetry property of triangulations. Full enumeration for dimension at most $4$ is obtained. In dimension $5$ several new phenomena happen: there are centrally-symmetric triangulations that are not Delaunay, there are non-regular triangulations (it could happen in dimension $4$) and a given simplex has a priori an infinity of possible adjacent simplices. We found $950$ periodic triangulations in dimension $5$ but finiteness is unknown. )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper )
Array ( [Name] => DOI [Label] => DOI [Group] => ID [Data] => 10.37236/8298 )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/1810.10911" linkWindow="_blank">http://arxiv.org/abs/1810.10911</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.1810.10911 )
RecordInfo Array ( [BibEntity] => Array ( [Identifiers] => Array ( [0] => Array ( [Type] => doi [Value] => 10.37236/8298 ) ) [Subjects] => Array ( [0] => Array ( [SubjectFull] => Mathematics - Combinatorics [Type] => general ) [1] => Array ( [SubjectFull] => Mathematics - Metric Geometry [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Periodic triangulations of $\mathbb{Z}^n$ [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Sikirić, Mathieu Dutour ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Garber, Alexey ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 25 [M] => 10 [Type] => published [Y] => 2018 ) ) ) ) ) ) )
IllustrationInfo