Periodic triangulations of $\mathbb{Z}^n$

التفاصيل البيبلوغرافية
العنوان: Periodic triangulations of $\mathbb{Z}^n$
المؤلفون: Sikirić, Mathieu Dutour, Garber, Alexey
المصدر: Electronic J. Comb, 27:2 (2020), P2.36
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, Mathematics - Metric Geometry
الوصف: We consider in this work triangulations of $\mathbb{Z}^n$ that are periodic along $\mathbb{Z}^n$. They generalize the triangulations obtained from Delaunay tessellations of lattices. Other important property is the regularity and central-symmetry property of triangulations. Full enumeration for dimension at most $4$ is obtained. In dimension $5$ several new phenomena happen: there are centrally-symmetric triangulations that are not Delaunay, there are non-regular triangulations (it could happen in dimension $4$) and a given simplex has a priori an infinity of possible adjacent simplices. We found $950$ periodic triangulations in dimension $5$ but finiteness is unknown.
نوع الوثيقة: Working Paper
DOI: 10.37236/8298
URL الوصول: http://arxiv.org/abs/1810.10911
رقم الانضمام: edsarx.1810.10911
قاعدة البيانات: arXiv