Report
Simulations meet Machine Learning in Structural Biology
العنوان: | Simulations meet Machine Learning in Structural Biology |
---|---|
المؤلفون: | Pérez, Adrià, Martínez-Rosell, Gerard, De Fabritiis, Gianni |
المصدر: | Current Opinion in Structural Biology, Volume 49, April 2018, Pages 139-144 |
سنة النشر: | 2018 |
المجموعة: | Physics (Other) Quantitative Biology |
مصطلحات موضوعية: | Quantitative Biology - Biomolecules, Physics - Computational Physics |
الوصف: | Classical molecular dynamics (MD) simulations will be able to reach sampling in the second timescale within five years, producing petabytes of simulation data at current force field accuracy. Notwithstanding this, MD will still be in the regime of low-throughput, high-latency predictions with average accuracy. We envisage that machine learning (ML) will be able to solve both the accuracy and time-to-prediction problem by learning predictive models using expensive simulation data. The synergies between classical, quantum simulations and ML methods, such as artificial neural networks, have the potential to drastically reshape the way we make predictions in computational structural biology and drug discovery. |
نوع الوثيقة: | Working Paper |
DOI: | 10.1016/j.sbi.2018.02.004 |
URL الوصول: | http://arxiv.org/abs/1810.09535 |
رقم الانضمام: | edsarx.1810.09535 |
قاعدة البيانات: | arXiv |
DOI: | 10.1016/j.sbi.2018.02.004 |
---|