Normal subgroups in the group of column-finite infinite matrices

التفاصيل البيبلوغرافية
العنوان: Normal subgroups in the group of column-finite infinite matrices
المؤلفون: Hołubowski, Waldemar, Maciaszczyk, Martyna, Żurek, Sebastian
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Group Theory, 20E07, 20H20
الوصف: The classical result, due to Jordan, Burnside, Dickson, says that every normal subgroup of $GL(n, K)$ ($K$ - a field, $n \geq 3$) which is not contained in the center, contains $SL(n, K)$. A. Rosenberg gave description of normal subgroups of $GL(V)$, where $V$ is a vector space of any infinite cardinality dimension over a division ring. However, when he considers subgroups of the direct product of the center and the group of linear transformations $g$ such that $g-id_V$ has finite dimensional range the proof is not complete. We fill this gap for countably dimensional $V$ giving description of the lattice of normal subgroups in the group of infinite column-finite matrices indexed by positive integers over any field.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1808.06873
رقم الانضمام: edsarx.1808.06873
قاعدة البيانات: arXiv