Report
Integrable Hamiltonian systems with a periodic orbit or invariant torus unique in the whole phase space
العنوان: | Integrable Hamiltonian systems with a periodic orbit or invariant torus unique in the whole phase space |
---|---|
المؤلفون: | Sevryuk, Mikhail B. |
المصدر: | Arnold Mathematical Journal, 2018, Vol. 4, No. 3-4, pp. 415-422 |
سنة النشر: | 2018 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Dynamical Systems, 37J45 70H12 70K42 70K43 70H33 |
الوصف: | It is very well known that periodic orbits of autonomous Hamiltonian systems are generically organized into smooth one-parameter families (the parameter being just the energy value). We present a simple example of an integrable Hamiltonian system (with an arbitrary number of degrees of freedom greater than one) with a unique periodic orbit in the phase space (which is not compact). Similar examples are given for Hamiltonian systems with a unique invariant torus (of any prescribed dimension) carrying conditionally periodic motions. Parallel examples for Hamiltonian systems with a compact phase space and with uniqueness replaced by isolatedness are also constructed. Finally, reversible analogues of all the examples are described. Comment: 8 pages, submitted to the Arnold Mathematical Journal |
نوع الوثيقة: | Working Paper |
DOI: | 10.1007/s40598-018-0093-2 |
URL الوصول: | http://arxiv.org/abs/1808.03596 |
رقم الانضمام: | edsarx.1808.03596 |
قاعدة البيانات: | arXiv |
DOI: | 10.1007/s40598-018-0093-2 |
---|