A study on spline quasi-interpolation based quadrature rules for the isogeometric Galerkin BEM

التفاصيل البيبلوغرافية
العنوان: A study on spline quasi-interpolation based quadrature rules for the isogeometric Galerkin BEM
المؤلفون: Falini, Antonella, Kanduc, Tadej
المصدر: Advanced Methods for Geometric Modeling and Numerical Simulation, Springer INdAM Series 35 (2019) 99-125
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Numerical Analysis
الوصف: Two recently introduced quadrature schemes for weakly singular integrals [Calabr\`o et al. J. Comput. Appl. Math. 2018] are investigated in the context of boundary integral equations arising in the isogeometric formulation of Galerkin Boundary Element Method (BEM). In the first scheme, the regular part of the integrand is approximated by a suitable quasi--interpolation spline. In the second scheme the regular part is approximated by a product of two spline functions. The two schemes are tested and compared against other standard and novel methods available in literature to evaluate different types of integrals arising in the Galerkin formulation. Numerical tests reveal that under reasonable assumptions the second scheme convergences with the optimal order in the Galerkin method, when performing $h$-refinement, even with a small amount of quadrature nodes. The quadrature schemes are validated also in numerical examples to solve 2D Laplace problems with Dirichlet boundary conditions.
نوع الوثيقة: Working Paper
DOI: 10.1007/978-3-030-27331-6_6
URL الوصول: http://arxiv.org/abs/1807.11277
رقم الانضمام: edsarx.1807.11277
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/978-3-030-27331-6_6