Report
On the almost universality of $\lfloor x^2/a\rfloor+\lfloor y^2/b\rfloor+\lfloor z^2/c\rfloor$
العنوان: | On the almost universality of $\lfloor x^2/a\rfloor+\lfloor y^2/b\rfloor+\lfloor z^2/c\rfloor$ |
---|---|
المؤلفون: | Wu, Hai-Liang, Ni, He-Xia, Pan, Hao |
سنة النشر: | 2018 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory |
الوصف: | In 2013, Farhi conjectured that for each $m\geq 3$, every natural number $n$ can be represented as $\lfloor x^2/m\rfloor+\lfloor y^2/m\rfloor+\lfloor z^2/m\rfloor$ with $x,y,z\in\Z$, where $\lfloor\cdot\rfloor$ denotes the floor function. Moreover, in 2015, Sun conjectured that every natural number $n$ can be written as $\lfloor x^2/a\rfloor+\lfloor y^2/b\rfloor+\lfloor z^2/c\rfloor$ with $x,y,z\in\Z$, where $a,b,c$ are integers and $(a,b,c)\neq (1,1,1),(2,2,2)$. In this paper, with the help of congruence theta functions, we prove that for each $m\geq 3$, Farhi's conjecture is true for every sufficiently large integer $n$. And for $a,b,c\geq 5$ with $a,b,c$ are pairwisely co-prime, we also confirm Sun's conjecture for every sufficiently large integer $n$. Comment: 20 pages. arXiv admin note: text overlap with arXiv:1806.02105 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1806.10136 |
رقم الانضمام: | edsarx.1806.10136 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |