On the almost universality of $\lfloor x^2/a\rfloor+\lfloor y^2/b\rfloor+\lfloor z^2/c\rfloor$

التفاصيل البيبلوغرافية
العنوان: On the almost universality of $\lfloor x^2/a\rfloor+\lfloor y^2/b\rfloor+\lfloor z^2/c\rfloor$
المؤلفون: Wu, Hai-Liang, Ni, He-Xia, Pan, Hao
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory
الوصف: In 2013, Farhi conjectured that for each $m\geq 3$, every natural number $n$ can be represented as $\lfloor x^2/m\rfloor+\lfloor y^2/m\rfloor+\lfloor z^2/m\rfloor$ with $x,y,z\in\Z$, where $\lfloor\cdot\rfloor$ denotes the floor function. Moreover, in 2015, Sun conjectured that every natural number $n$ can be written as $\lfloor x^2/a\rfloor+\lfloor y^2/b\rfloor+\lfloor z^2/c\rfloor$ with $x,y,z\in\Z$, where $a,b,c$ are integers and $(a,b,c)\neq (1,1,1),(2,2,2)$. In this paper, with the help of congruence theta functions, we prove that for each $m\geq 3$, Farhi's conjecture is true for every sufficiently large integer $n$. And for $a,b,c\geq 5$ with $a,b,c$ are pairwisely co-prime, we also confirm Sun's conjecture for every sufficiently large integer $n$.
Comment: 20 pages. arXiv admin note: text overlap with arXiv:1806.02105
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1806.10136
رقم الانضمام: edsarx.1806.10136
قاعدة البيانات: arXiv