Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data

التفاصيل البيبلوغرافية
العنوان: Partial least squares discriminant analysis: A dimensionality reduction method to classify hyperspectral data
المؤلفون: Fordellone, Mario, Bellincontro, Andrea, Mencarelli, Fabio
سنة النشر: 2018
المجموعة: Statistics
مصطلحات موضوعية: Statistics - Applications
الوصف: The recent development of more sophisticated spectroscopic methods allows acqui- sition of high dimensional datasets from which valuable information may be extracted using multivariate statistical analyses, such as dimensionality reduction and automatic classification (supervised and unsupervised). In this work, a supervised classification through a partial least squares discriminant analysis (PLS-DA) is performed on the hy- perspectral data. The obtained results are compared with those obtained by the most commonly used classification approaches.
نوع الوثيقة: Working Paper
DOI: 10.26398/IJAS.0031-010
URL الوصول: http://arxiv.org/abs/1806.09347
رقم الانضمام: edsarx.1806.09347
قاعدة البيانات: arXiv