On the $x$--coordinates of Pell equations which are $k$--generalized Fibonacci numbers

التفاصيل البيبلوغرافية
العنوان: On the $x$--coordinates of Pell equations which are $k$--generalized Fibonacci numbers
المؤلفون: Ddamulira, Mahadi, Luca, Florian
سنة النشر: 2018
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, 11A25, 11B39, 11J86
الوصف: For an integer $k\geq 2$, let $\{F^{(k)}_{n}\}_{n\geqslant 2-k}$ be the $ k$--generalized Fibonacci sequence which starts with $0, \ldots, 0,1$ (a total of $k$ terms) and for which each term afterwards is the sum of the $k$ preceding terms. In this paper, for an integer $d\geq 2$ which is square free, we show that there is at most one value of the positive integer $x$ participating in the Pell equation $x^{2}-dy^{2} =\pm 1$ which is a $k$--generalized Fibonacci number, with a couple of parametric exceptions which we completely characterise. This paper extends previous work from [17] for the case $k=2$ and [16] for the case $k=3$.
Comment: 36 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1803.10434
رقم الانضمام: edsarx.1803.10434
قاعدة البيانات: arXiv