Incremental Training of Deep Convolutional Neural Networks

التفاصيل البيبلوغرافية
العنوان: Incremental Training of Deep Convolutional Neural Networks
المؤلفون: Istrate, Roxana, Malossi, Adelmo Cristiano Innocenza, Bekas, Costas, Nikolopoulos, Dimitrios
سنة النشر: 2018
المجموعة: Computer Science
Statistics
مصطلحات موضوعية: Computer Science - Learning, Statistics - Machine Learning
الوصف: We propose an incremental training method that partitions the original network into sub-networks, which are then gradually incorporated in the running network during the training process. To allow for a smooth dynamic growth of the network, we introduce a look-ahead initialization that outperforms the random initialization. We demonstrate that our incremental approach reaches the reference network baseline accuracy. Additionally, it allows to identify smaller partitions of the original state-of-the-art network, that deliver the same final accuracy, by using only a fraction of the global number of parameters. This allows for a potential speedup of the training time of several factors. We report training results on CIFAR-10 for ResNet and VGGNet.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1803.10232
رقم الانضمام: edsarx.1803.10232
قاعدة البيانات: arXiv