Gaussian and exponential lateral connectivity on distributed spiking neural network simulation

التفاصيل البيبلوغرافية
العنوان: Gaussian and exponential lateral connectivity on distributed spiking neural network simulation
المؤلفون: Pastorelli, Elena, Paolucci, Pier Stanislao, Simula, Francesco, Biagioni, Andrea, Capuani, Fabrizio, Cretaro, Paolo, De Bonis, Giulia, Cicero, Francesca Lo, Lonardo, Alessandro, Martinelli, Michele, Pontisso, Luca, Vicini, Piero, Ammendola, Roberto
سنة النشر: 2018
المجموعة: Computer Science
Quantitative Biology
مصطلحات موضوعية: Computer Science - Distributed, Parallel, and Cluster Computing, Computer Science - Neural and Evolutionary Computing, Quantitative Biology - Neurons and Cognition
الوصف: We measured the impact of long-range exponentially decaying intra-areal lateral connectivity on the scaling and memory occupation of a distributed spiking neural network simulator compared to that of short-range Gaussian decays. While previous studies adopted short-range connectivity, recent experimental neurosciences studies are pointing out the role of longer-range intra-areal connectivity with implications on neural simulation platforms. Two-dimensional grids of cortical columns composed by up to 11 M point-like spiking neurons with spike frequency adaption were connected by up to 30 G synapses using short- and long-range connectivity models. The MPI processes composing the distributed simulator were run on up to 1024 hardware cores, hosted on a 64 nodes server platform. The hardware platform was a cluster of IBM NX360 M5 16-core compute nodes, each one containing two Intel Xeon Haswell 8-core E5-2630 v3 processors, with a clock of 2.40 G Hz, interconnected through an InfiniBand network, equipped with 4x QDR switches.
Comment: 9 pages, 9 figures, added reference to final peer reviewed version on conference paper and DOI
نوع الوثيقة: Working Paper
DOI: 10.1109/PDP2018.2018.00110
URL الوصول: http://arxiv.org/abs/1803.08833
رقم الانضمام: edsarx.1803.08833
قاعدة البيانات: arXiv
الوصف
DOI:10.1109/PDP2018.2018.00110