Scalable Quantum Tomography with Fidelity Estimation

التفاصيل البيبلوغرافية
العنوان: Scalable Quantum Tomography with Fidelity Estimation
المؤلفون: Wang, Jun, Han, Zhao-Yu, Wang, Song-Bo, Li, Zeyang, Mu, Liang-Zhu, Fan, Heng, Wang, Lei
المصدر: Phys. Rev. A 101, 032321 (2020)
سنة النشر: 2017
المجموعة: Quantum Physics
مصطلحات موضوعية: Quantum Physics
الوصف: We propose a quantum tomography scheme for pure qudit systems which adopts random base measurements and generative learning methods, along with a built-in fidelity estimation approach to assess the reliability of the tomographic states. We prove the validity of the scheme theoretically, and we perform numerically simulated experiments on several target states including three typical quantum information states and randomly initiated states, demonstrating its efficiency and robustness. The number of replicas required by a certain convergence criterion grows in the manner of low-degree polynomial when the system scales, thus the scheme achieves high scalability that is crucial for practical quantum state tomography.
Comment: 5 pages of main text including 5 figures, appended by 4 appendices including 1 figure. GitHub: https://github.com/congzlwag/BornMachineTomo
نوع الوثيقة: Working Paper
DOI: 10.1103/PhysRevA.101.032321
URL الوصول: http://arxiv.org/abs/1712.03213
رقم الانضمام: edsarx.1712.03213
قاعدة البيانات: arXiv
الوصف
DOI:10.1103/PhysRevA.101.032321