Report
Scalable Quantum Tomography with Fidelity Estimation
العنوان: | Scalable Quantum Tomography with Fidelity Estimation |
---|---|
المؤلفون: | Wang, Jun, Han, Zhao-Yu, Wang, Song-Bo, Li, Zeyang, Mu, Liang-Zhu, Fan, Heng, Wang, Lei |
المصدر: | Phys. Rev. A 101, 032321 (2020) |
سنة النشر: | 2017 |
المجموعة: | Quantum Physics |
مصطلحات موضوعية: | Quantum Physics |
الوصف: | We propose a quantum tomography scheme for pure qudit systems which adopts random base measurements and generative learning methods, along with a built-in fidelity estimation approach to assess the reliability of the tomographic states. We prove the validity of the scheme theoretically, and we perform numerically simulated experiments on several target states including three typical quantum information states and randomly initiated states, demonstrating its efficiency and robustness. The number of replicas required by a certain convergence criterion grows in the manner of low-degree polynomial when the system scales, thus the scheme achieves high scalability that is crucial for practical quantum state tomography. Comment: 5 pages of main text including 5 figures, appended by 4 appendices including 1 figure. GitHub: https://github.com/congzlwag/BornMachineTomo |
نوع الوثيقة: | Working Paper |
DOI: | 10.1103/PhysRevA.101.032321 |
URL الوصول: | http://arxiv.org/abs/1712.03213 |
رقم الانضمام: | edsarx.1712.03213 |
قاعدة البيانات: | arXiv |
DOI: | 10.1103/PhysRevA.101.032321 |
---|