Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part

التفاصيل البيبلوغرافية
العنوان: Extrapolation-Based Super-Convergent Implicit-Explicit Peer Methods with A-stable Implicit Part
المؤلفون: Schneider, Moritz, Lang, Jens, Hundsdorfer, Willem
المصدر: J. Comput. Physics, Vol. 367, pp. 121-133, 2018
سنة النشر: 2017
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Numerical Analysis, 65L04, 65L06, 65M20
الوصف: In this paper, we extend the implicit-explicit (IMEX) methods of Peer type recently developed in [Lang, Hundsdorfer, J. Comp. Phys., 337:203--215, 2017] to a broader class of two-step methods that allow the construction of super-convergent IMEX-Peer methods with A-stable implicit part. IMEX schemes combine the necessary stability of implicit and low computational costs of explicit methods to efficiently solve systems of ordinary differential equations with both stiff and non-stiff parts included in the source term. To construct super-convergent IMEX-Peer methods with favourable stability properties, we derive necessary and sufficient conditions on the coefficient matrices and apply an extrapolation approach based on already computed stage values. Optimised super-convergent IMEX-Peer methods of order s+1 for s=2,3,4 stages are given as result of a search algorithm carefully designed to balance the size of the stability regions and the extrapolation errors. Numerical experiments and a comparison to other IMEX-Peer methods are included.
Comment: 22 pages, 4 figures. arXiv admin note: text overlap with arXiv:1610.00518
نوع الوثيقة: Working Paper
DOI: 10.1016/j.jcp.2018.04.006
URL الوصول: http://arxiv.org/abs/1711.09231
رقم الانضمام: edsarx.1711.09231
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.jcp.2018.04.006