MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks

التفاصيل البيبلوغرافية
العنوان: MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks
المؤلفون: Gordon, Ariel, Eban, Elad, Nachum, Ofir, Chen, Bo, Wu, Hao, Yang, Tien-Ju, Choi, Edward
سنة النشر: 2017
المجموعة: Computer Science
Statistics
مصطلحات موضوعية: Computer Science - Learning, Statistics - Machine Learning
الوصف: We present MorphNet, an approach to automate the design of neural network structures. MorphNet iteratively shrinks and expands a network, shrinking via a resource-weighted sparsifying regularizer on activations and expanding via a uniform multiplicative factor on all layers. In contrast to previous approaches, our method is scalable to large networks, adaptable to specific resource constraints (e.g. the number of floating-point operations per inference), and capable of increasing the network's performance. When applied to standard network architectures on a wide variety of datasets, our approach discovers novel structures in each domain, obtaining higher performance while respecting the resource constraint.
Comment: Added reproducibility and stability figures in the appendix, as well minor typos and clarifications to the main text
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1711.06798
رقم الانضمام: edsarx.1711.06798
قاعدة البيانات: arXiv