Detection of Bars in Galaxies using a Deep Convolutional Neural Network

التفاصيل البيبلوغرافية
العنوان: Detection of Bars in Galaxies using a Deep Convolutional Neural Network
المؤلفون: Abraham, Sheelu, Aniyan, Arun, Kembhavi, Ajit K., Philip, N. S., Vaghmare, Kaustubh
سنة النشر: 2017
المجموعة: Astrophysics
مصطلحات موضوعية: Astrophysics - Instrumentation and Methods for Astrophysics
الوصف: We present an automated method for the detection of bar structure in optical images of galaxies using a deep convolutional neural network which is easy to use and provides good accuracy. In our study we use a sample of 9346 galaxies in the redshift range 0.009-0.2 from the Sloan Digital Sky Survey, which has 3864 barred galaxies, the rest being unbarred. We reach a top precision of ~94 per cent in identifying bars in galaxies using the trained network. This accuracy matches the accuracy reached by human experts on the same data without additional information about the images. Since Deep Convolutional Neural Networks can be scaled to handle large volumes of data, the method is expected to have great relevance in an era where astronomy data is rapidly increasing in terms of volume, variety, volatility and velocity along with other V's that characterize big data. With the trained model we have constructed a catalogue of barred galaxies from SDSS and made it available online.
Comment: 11 pages, 12 figures, MNRAS 477, 1, 11, 2018
نوع الوثيقة: Working Paper
DOI: 10.1093/mnras/sty627
URL الوصول: http://arxiv.org/abs/1711.04573
رقم الانضمام: edsarx.1711.04573
قاعدة البيانات: arXiv