Report
Asymptotic stability of viscous contact wave and rarefaction waves for the system of heat-conductive ideal gas without viscosity
العنوان: | Asymptotic stability of viscous contact wave and rarefaction waves for the system of heat-conductive ideal gas without viscosity |
---|---|
المؤلفون: | Fan, Lili, Gong, Guiqiong, Tang, Shaojun |
سنة النشر: | 2017 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Analysis of PDEs |
الوصف: | This paper is concerned with the Cauchy problem of heat-conductive ideal gas without viscosity. We show that, for the non-viscous case, if the strengths of the wave patterns and the initial perturbation are suitably small, the unique global-in-time solution exists and asymptotically tends toward the corresponding the viscous contact wave or the composition of a viscous contact wave with rarefaction waves determined by the initial condition, which extended the results by Huang-Li-Matsumura[13], where they treated the viscous and heat-conductive ideal gas. Comment: 23 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1710.02661 |
رقم الانضمام: | edsarx.1710.02661 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |