التفاصيل البيبلوغرافية
العنوان: |
On Integral Forms of Specht Modules Labelled by Hook Partitions |
المؤلفون: |
Danz, Susanne, Hofmann, Tommy |
سنة النشر: |
2017 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Representation Theory, Mathematics - Number Theory, 20C10, 20C11, 20C30, 20C20 |
الوصف: |
We investigate integral forms of simple modules of symmetric groups over fields of characteristic $0$ labelled by hook partitions. Building on work of Plesken and Craig, for every odd prime $p$, we give a set of representatives of the isomorphism classes of $\mathbb{Z}_p$-forms of the simple $\mathbb{Q}_p \mathfrak{S}_n$-module labelled by the partition $(n-k,1^k)$, where $n\in\mathbb{N}$ and $0\leq k\leq n-1$. We also settle the analogous question for $p=2$, assuming that $n\not\equiv 0\pmod{4}$ and $k\in\{2,n-3\}$. As a consequence this leads to a set of representatives of the isomorphism classes of $\mathbb{Z}$-forms of the simple $\mathbb{Q}\mathfrak{S}_n$-modules labelled by $(n-2,1^2)$ and $(3,1^{n-3})$, again assuming $n\not\equiv 0\pmod{4}$. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/1706.02860 |
رقم الانضمام: |
edsarx.1706.02860 |
قاعدة البيانات: |
arXiv |