Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model

التفاصيل البيبلوغرافية
العنوان: Algebraic Bethe ansatz for the XXZ Heisenberg spin chain with triangular boundaries and the corresponding Gaudin model
المؤلفون: Manojlović, N., Salom, and I.
المصدر: Nuclear Physics B 923 (2017) pp. 73-106
سنة النشر: 2017
المجموعة: Mathematics
High Energy Physics - Theory
Mathematical Physics
Nonlinear Sciences
مصطلحات موضوعية: Nonlinear Sciences - Exactly Solvable and Integrable Systems, High Energy Physics - Theory, Mathematical Physics
الوصف: The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain, of arbitrary spin-$s$, in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Comment: 39 pages. Typos corrected. arXiv admin note: substantial text overlap with arXiv:1405.7398, arXiv:1412.1396
نوع الوثيقة: Working Paper
DOI: 10.1016/j.nuclphysb.2017.07.017
URL الوصول: http://arxiv.org/abs/1705.02235
رقم الانضمام: edsarx.1705.02235
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.nuclphysb.2017.07.017