Real-space analysis of scanning tunneling microscopy topography datasets using sparse modeling approach

التفاصيل البيبلوغرافية
العنوان: Real-space analysis of scanning tunneling microscopy topography datasets using sparse modeling approach
المؤلفون: Miyama, Masamichi J., Hukushima, Koji
المصدر: J. Phys. Soc. Jpn. 87, 044801 (2018)
سنة النشر: 2017
المجموعة: Condensed Matter
Physics (Other)
مصطلحات موضوعية: Physics - Data Analysis, Statistics and Probability, Condensed Matter - Materials Science
الوصف: A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contains numerous peaks corresponding to surface atoms. The method, based on the relevance vector machine with $\mathrm{L}_1$ regularization and $k$-means clustering, enables separation of the peaks and atomic center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison to the conventional least-square method. An application of the proposed method to experimental data of a metallic oxide thin film clearly indicates the existence of defects and corresponding local lattice deformations.
Comment: 8 pages, 11 figures
نوع الوثيقة: Working Paper
DOI: 10.7566/JPSJ.87.044801
URL الوصول: http://arxiv.org/abs/1703.08643
رقم الانضمام: edsarx.1703.08643
قاعدة البيانات: arXiv