Report
Real-space analysis of scanning tunneling microscopy topography datasets using sparse modeling approach
العنوان: | Real-space analysis of scanning tunneling microscopy topography datasets using sparse modeling approach |
---|---|
المؤلفون: | Miyama, Masamichi J., Hukushima, Koji |
المصدر: | J. Phys. Soc. Jpn. 87, 044801 (2018) |
سنة النشر: | 2017 |
المجموعة: | Condensed Matter Physics (Other) |
مصطلحات موضوعية: | Physics - Data Analysis, Statistics and Probability, Condensed Matter - Materials Science |
الوصف: | A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contains numerous peaks corresponding to surface atoms. The method, based on the relevance vector machine with $\mathrm{L}_1$ regularization and $k$-means clustering, enables separation of the peaks and atomic center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison to the conventional least-square method. An application of the proposed method to experimental data of a metallic oxide thin film clearly indicates the existence of defects and corresponding local lattice deformations. Comment: 8 pages, 11 figures |
نوع الوثيقة: | Working Paper |
DOI: | 10.7566/JPSJ.87.044801 |
URL الوصول: | http://arxiv.org/abs/1703.08643 |
رقم الانضمام: | edsarx.1703.08643 |
قاعدة البيانات: | arXiv |
DOI: | 10.7566/JPSJ.87.044801 |
---|