Uniform rectifiability from Carleson measure estimates and $\varepsilon$-approximability of bounded harmonic functions

التفاصيل البيبلوغرافية
العنوان: Uniform rectifiability from Carleson measure estimates and $\varepsilon$-approximability of bounded harmonic functions
المؤلفون: Garnett, John, Mourgoglou, Mihalis, Tolsa, Xavier
المصدر: Duke Math. J. 167, no. 8 (2018), 1473-1524
سنة النشر: 2016
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Classical Analysis and ODEs, Mathematics - Analysis of PDEs, 31A15, 28A75, 28A78
الوصف: Let $\Omega\subset\mathbb R^{n+1}$, $n\geq1$, be a corkscrew domain with Ahlfors-David regular boundary. In this paper we prove that $\partial\Omega$ is uniformly $n$-rectifiable if every bounded harmonic function on $\Omega$ is $\varepsilon$-approximable or if every bounded harmonic function on $\Omega$ satisfies a suitable square-function Carleson measure estimate. In particular, this applies to the case when $\Omega=\mathbb R^{n+1}\setminus E$ and $E$ is Ahlfors-David regular. Our results solve a conjecture posed by Hofmann, Martell, and Mayboroda in a recent work where they proved the converse statements. Here we also obtain two additional criteria for uniform rectifiability. One is given in terms of the so-called "$SComment: Correction of a few typos and general reorganization of the arguments. Additional references
نوع الوثيقة: Working Paper
DOI: 10.1215/00127094-2017-0057
URL الوصول: http://arxiv.org/abs/1611.00264
رقم الانضمام: edsarx.1611.00264
قاعدة البيانات: arXiv
الوصف
DOI:10.1215/00127094-2017-0057