Report
Whitney equisingularity of families of surfaces in $\mathbb{C}^3$
العنوان: | Whitney equisingularity of families of surfaces in $\mathbb{C}^3$ |
---|---|
المؤلفون: | Ruas, M. A. S., Silva, O. N. |
سنة النشر: | 2016 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Complex Variables |
الوصف: | In this work, we study families of singular surfaces in $\mathbb{C}^3$ parametrized by $\mathcal{A}$-finitely determined map germs. We consider the topological triviality and Whitney equisingularity of an unfolding $F$ of a finitely determined map germ $f:(\mathbb{C}^2,0)\rightarrow(\mathbb{C}^3,0)$. We investigate the following conjecture: topological triviality implies Whitney equisingularity of the unfolding $F$? We provide a complete answer to this conjecture, given counterexamples showing how the conjecture can be false. Comment: 15 pages, 2 figures. Changes in version 2: the proof of Corollary 5.13 of version 1 was not corrected. In version 2, we present counterexamples for the result stated in version 1 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1608.08290 |
رقم الانضمام: | edsarx.1608.08290 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |