Whitney equisingularity of families of surfaces in $\mathbb{C}^3$

التفاصيل البيبلوغرافية
العنوان: Whitney equisingularity of families of surfaces in $\mathbb{C}^3$
المؤلفون: Ruas, M. A. S., Silva, O. N.
سنة النشر: 2016
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Complex Variables
الوصف: In this work, we study families of singular surfaces in $\mathbb{C}^3$ parametrized by $\mathcal{A}$-finitely determined map germs. We consider the topological triviality and Whitney equisingularity of an unfolding $F$ of a finitely determined map germ $f:(\mathbb{C}^2,0)\rightarrow(\mathbb{C}^3,0)$. We investigate the following conjecture: topological triviality implies Whitney equisingularity of the unfolding $F$? We provide a complete answer to this conjecture, given counterexamples showing how the conjecture can be false.
Comment: 15 pages, 2 figures. Changes in version 2: the proof of Corollary 5.13 of version 1 was not corrected. In version 2, we present counterexamples for the result stated in version 1
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1608.08290
رقم الانضمام: edsarx.1608.08290
قاعدة البيانات: arXiv