Report
Skew-selfadjoint Dirac systems: stability of the procedure of explicit solving the inverse problem
العنوان: | Skew-selfadjoint Dirac systems: stability of the procedure of explicit solving the inverse problem |
---|---|
المؤلفون: | Fritzsche, B., Kirstein, B., Roitberg, I. Ya., Sakhnovich, A. L. |
المصدر: | Linear Algebra and its Applications, 533 (2017) 428-450 |
سنة النشر: | 2015 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Spectral Theory, Mathematics - Classical Analysis and ODEs, Mathematics - Optimization and Control, 15A24, 15A29, 34A55, 34B20, 34D20, 93B20 |
الوصف: | Procedures to recover explicitly discrete and continuous skew-selfadjoint Dirac systems on semi-axis from rational Weyl matrix functions are considered. Their stability is shown. Some new facts on asymptotics of pseudo-exponential potentials (i.e., of explicit solutions of inverse problems) are proved as well. GBDT version of Backlund-Darboux transformation, methods from system theory and results on algebraic Riccati equations are used for this purpose. Comment: This paper is related to the paper arXiv:1508.07954 and deals with the case of discrete and continuous skew-selfadjoint Dirac systems (instead of the continuous selfadjoint case in arXiv:1508.07954). The discrete case is added in the current version |
نوع الوثيقة: | Working Paper |
DOI: | 10.1016/j.laa.2017.07.034 |
URL الوصول: | http://arxiv.org/abs/1510.00793 |
رقم الانضمام: | edsarx.1510.00793 |
قاعدة البيانات: | arXiv |
DOI: | 10.1016/j.laa.2017.07.034 |
---|