Skew-selfadjoint Dirac systems: stability of the procedure of explicit solving the inverse problem

التفاصيل البيبلوغرافية
العنوان: Skew-selfadjoint Dirac systems: stability of the procedure of explicit solving the inverse problem
المؤلفون: Fritzsche, B., Kirstein, B., Roitberg, I. Ya., Sakhnovich, A. L.
المصدر: Linear Algebra and its Applications, 533 (2017) 428-450
سنة النشر: 2015
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Spectral Theory, Mathematics - Classical Analysis and ODEs, Mathematics - Optimization and Control, 15A24, 15A29, 34A55, 34B20, 34D20, 93B20
الوصف: Procedures to recover explicitly discrete and continuous skew-selfadjoint Dirac systems on semi-axis from rational Weyl matrix functions are considered. Their stability is shown. Some new facts on asymptotics of pseudo-exponential potentials (i.e., of explicit solutions of inverse problems) are proved as well. GBDT version of Backlund-Darboux transformation, methods from system theory and results on algebraic Riccati equations are used for this purpose.
Comment: This paper is related to the paper arXiv:1508.07954 and deals with the case of discrete and continuous skew-selfadjoint Dirac systems (instead of the continuous selfadjoint case in arXiv:1508.07954). The discrete case is added in the current version
نوع الوثيقة: Working Paper
DOI: 10.1016/j.laa.2017.07.034
URL الوصول: http://arxiv.org/abs/1510.00793
رقم الانضمام: edsarx.1510.00793
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.laa.2017.07.034