An inverse theorem for compact Lipschitz regions in $R^d$ using localized kernel bases

التفاصيل البيبلوغرافية
العنوان: An inverse theorem for compact Lipschitz regions in $R^d$ using localized kernel bases
المؤلفون: Hangelbroek, Thomas, Narcowich, Francis J., Rieger, Christian, Ward, Joseph D.
سنة النشر: 2015
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Numerical Analysis, Mathematics - Classical Analysis and ODEs, 41A17, 41A27, 41A63
الوصف: While inverse estimates in the context of radial basis function approximation on boundary-free domains have been known for at least ten years, such theorems for the more important and difficult setting of bounded domains have been notably absent. This article develops inverse estimates for finite dimensional spaces arising in radial basis function approximation and meshless methods. The inverse estimates we consider control Sobolev norms of linear combinations of a localized basis by the $L_p$ norm over a bounded domain. The localized basis is generated by forming local Lagrange functions for certain types of RBFs (namely Mat\'ern and surface spline RBFs). In this way it extends the boundary-free construction of Fuselier, Hangelbroek, Narcowich, Ward and Wright.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1508.02952
رقم الانضمام: edsarx.1508.02952
قاعدة البيانات: arXiv