Computing Maximal Layers Of Points in $E^{f(n)}$

التفاصيل البيبلوغرافية
العنوان: Computing Maximal Layers Of Points in $E^{f(n)}$
المؤلفون: Banerjee, Indranil, Richards, Dana
سنة النشر: 2015
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computational Geometry, Computer Science - Data Structures and Algorithms
الوصف: In this paper we present a randomized algorithm for computing the collection of maximal layers for a point set in $E^{k}$ ($k = f(n)$). The input to our algorithm is a point set $P = \{p_1,...,p_n\}$ with $p_i \in E^{k}$. The proposed algorithm achieves a runtime of $O\left(kn^{2 - {1 \over \log{k}} + \log_k{\left(1 + {2 \over {k+1}}\right)}}\log{n}\right)$ when $P$ is a random order and a runtime of $O(k^2 n^{3/2 + (\log_{k}{(k-1)})/2}\log{n})$ for an arbitrary $P$. Both bounds hold in expectation. Additionally, the run time is bounded by $O(kn^2)$ in the worst case. This is the first non-trivial algorithm whose run-time remains polynomial whenever $f(n)$ is bounded by some polynomial in $n$ while remaining sub-quadratic in $n$ for constant $k$. The algorithm is implemented using a new data-structure for storing and answering dominance queries over the set of incomparable points.
Comment: 13 pages, submitted to LATIN 2016
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1508.02477
رقم الانضمام: edsarx.1508.02477
قاعدة البيانات: arXiv