Report
Linnik's Theorem for Sato-Tate Laws on Elliptic Curves with Complex Multiplication
العنوان: | Linnik's Theorem for Sato-Tate Laws on Elliptic Curves with Complex Multiplication |
---|---|
المؤلفون: | Chen, Evan, Park, Peter S., Swaminathan, Ashvin |
المصدر: | Res. number theory (2015) 1: 28 |
سنة النشر: | 2015 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory, 11F11, 14H52, 11M41, 11N05 |
الوصف: | Let $E/\mathbb{Q}$ be an elliptic curve with complex multiplication (CM), and for each prime $p$ of good reduction, let $a_E(p) = p + 1 - \#E(\mathbb{F}_p)$ denote the trace of Frobenius. By the Hasse bound, $a_E(p) = 2\sqrt{p} \cos \theta_p$ for a unique $\theta_p \in [0, \pi]$. In this paper, we prove that the least prime $p$ such that $\theta_p \in [\alpha, \beta] \subset [0, \pi]$ satisfies \[ p \ll \left(\frac{N_E}{\beta - \alpha}\right)^A, \] where $N_E$ is the conductor of $E$ and the implied constant and exponent $A > 2$ are absolute and effectively computable. Our result is an analogue for CM elliptic curves of Linnik's Theorem for arithmetic progressions, which states that the least prime $p \equiv a \pmod q$ for $(a,q)=1$ satisfies $p \ll q^L$ for an absolute constant $L > 0$. Comment: 11 pages; made minor modifications |
نوع الوثيقة: | Working Paper |
DOI: | 10.1007/s40993-015-0028-0 |
URL الوصول: | http://arxiv.org/abs/1506.09170 |
رقم الانضمام: | edsarx.1506.09170 |
قاعدة البيانات: | arXiv |
DOI: | 10.1007/s40993-015-0028-0 |
---|