Report
Non-Abelian $SU(3)_k$ anyons: inversion identities for higher rank face models
العنوان: | Non-Abelian $SU(3)_k$ anyons: inversion identities for higher rank face models |
---|---|
المؤلفون: | Frahm, Holger, Karaiskos, Nikos |
المصدر: | j. Phys. A: Math. Theor. 48 (2015) 484001 |
سنة النشر: | 2015 |
المجموعة: | Mathematics Condensed Matter High Energy Physics - Theory Mathematical Physics |
مصطلحات موضوعية: | Condensed Matter - Statistical Mechanics, High Energy Physics - Theory, Mathematical Physics |
الوصف: | The spectral problem for an integrable system of particles satisfying the fusion rules of $SU(3)_k$ is expressed in terms of exact inversion identities satisfied by the commuting transfer matrices of the integrable fused $A_2^{(1)}$ interaction round a face (IRF) model of Jimbo, Miwa and Okado. The identities are proven using local properties of the Boltzmann weights, in particular the Yang-Baxter equation and unitarity. They are closely related to the consistency conditions for the construction of eigenvalues obtained in the Separation of Variables approach to integrable vertex models. Comment: 25 pages |
نوع الوثيقة: | Working Paper |
DOI: | 10.1088/1751-8113/48/48/484001 |
URL الوصول: | http://arxiv.org/abs/1506.00822 |
رقم الانضمام: | edsarx.1506.00822 |
قاعدة البيانات: | arXiv |
DOI: | 10.1088/1751-8113/48/48/484001 |
---|