Minkowski product of convex sets and product numerical range

التفاصيل البيبلوغرافية
العنوان: Minkowski product of convex sets and product numerical range
المؤلفون: Li, Chi-Kwong, Pelejo, Diane Christine, Poon, Yiu-Tung, Wang, Kuo-Zhong
سنة النشر: 2015
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Metric Geometry, 51M15, 15A60
الوصف: Let $K_1, K_2$ be two compact convex sets in $\mathit{C}$. Their Minkowski product is the set $K_1K_2 = \{ab: a \in K_1, b\in K_2\}$. We show that the set $K_1K_2$ is star-shaped if $K_1$ is a line segment or a circular disk. Examples for $K_1$ and $K_2$ are given so that $K_1$ and $K_2$ are triangles (including interior) and $K_1K_2$ is not star-shaped. This gives a negative answer to a conjecture by Puchala et. al concerning the product numerical range in the study of quantum information science. Additional results and open problems are presented.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1505.05382
رقم الانضمام: edsarx.1505.05382
قاعدة البيانات: arXiv