Annular Khovanov homology and knotted Schur-Weyl representations

التفاصيل البيبلوغرافية
العنوان: Annular Khovanov homology and knotted Schur-Weyl representations
المؤلفون: Grigsby, J. Elisenda, Licata, Anthony M., Wehrli, Stephan M.
المصدر: Compositio Math. 154 (2018) 459-502
سنة النشر: 2015
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Geometric Topology, Mathematics - Quantum Algebra, Mathematics - Representation Theory, 57M27, 81R50, 20F36
الوصف: Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a "knotted" Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot.
Comment: 38 pages, 8 figures
نوع الوثيقة: Working Paper
DOI: 10.1112/S0010437X17007540
URL الوصول: http://arxiv.org/abs/1505.04386
رقم الانضمام: edsarx.1505.04386
قاعدة البيانات: arXiv
الوصف
DOI:10.1112/S0010437X17007540