Report
Annular Khovanov homology and knotted Schur-Weyl representations
العنوان: | Annular Khovanov homology and knotted Schur-Weyl representations |
---|---|
المؤلفون: | Grigsby, J. Elisenda, Licata, Anthony M., Wehrli, Stephan M. |
المصدر: | Compositio Math. 154 (2018) 459-502 |
سنة النشر: | 2015 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Geometric Topology, Mathematics - Quantum Algebra, Mathematics - Representation Theory, 57M27, 81R50, 20F36 |
الوصف: | Let L be a link in a thickened annulus. We show that its sutured annular Khovanov homology carries an action of the exterior current algebra of the Lie algebra sl_2. When L is an m-framed n-cable of a knot K in the three-sphere, its sutured annular Khovanov homology carries a commuting action of the symmetric group S_n. One therefore obtains a "knotted" Schur-Weyl representation that agrees with classical sl_2 Schur-Weyl duality when K is the Seifert-framed unknot. Comment: 38 pages, 8 figures |
نوع الوثيقة: | Working Paper |
DOI: | 10.1112/S0010437X17007540 |
URL الوصول: | http://arxiv.org/abs/1505.04386 |
رقم الانضمام: | edsarx.1505.04386 |
قاعدة البيانات: | arXiv |
DOI: | 10.1112/S0010437X17007540 |
---|