Chaotic Explosions

التفاصيل البيبلوغرافية
العنوان: Chaotic Explosions
المؤلفون: Altmann, Eduardo G., Portela, Jefferson S. E., Tél, Tamás
المصدر: EPL 109, 30003 (2015)
سنة النشر: 2015
المجموعة: Nonlinear Sciences
Physics (Other)
مصطلحات موضوعية: Nonlinear Sciences - Chaotic Dynamics, Physics - Optics
الوصف: We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.
Comment: 7 pages, 5 figures
نوع الوثيقة: Working Paper
DOI: 10.1209/0295-5075/109/30003
URL الوصول: http://arxiv.org/abs/1501.05443
رقم الانضمام: edsarx.1501.05443
قاعدة البيانات: arXiv
الوصف
DOI:10.1209/0295-5075/109/30003