Report
Constant terms of Eisenstein series over a totally real field
العنوان: | Constant terms of Eisenstein series over a totally real field |
---|---|
المؤلفون: | Ozawa, Tomomi |
المصدر: | Int. J. Number Theory (March 2017 issue) |
سنة النشر: | 2014 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory, 11F41 (Primary), 11F30 (Secondary) |
الوصف: | In this paper, we compute constant terms of Eisenstein series defined over a totally real field, at various cusps. In his paper published in 2003, M. Ohta computed the constant terms of Eisenstein series of weight two over the field of rational numbers, at all equivalence classes of cusps. As for Eisenstein series defined over a totally real field, S. Dasgupta, H. Darmon and R. Pollack calculated the constant terms at particular (not all) equivalence classes of cusps in 2011. We compute constant terms of Eisenstein series defined over a general totally real field at all equivalence classes of cusps, and describe them explicitly in terms of Hecke $L$-functions. This investigation is motivated by M. Ohta's work on congruence modules related to Eisenstein series defined over the field of rational numbers. Comment: 22 pages |
نوع الوثيقة: | Working Paper |
DOI: | 10.1142/S1793042117500208 |
URL الوصول: | http://arxiv.org/abs/1410.7440 |
رقم الانضمام: | edsarx.1410.7440 |
قاعدة البيانات: | arXiv |
DOI: | 10.1142/S1793042117500208 |
---|