Initial and boundary blow-up problem for $p$-Laplacian parabolic equation with general absorption

التفاصيل البيبلوغرافية
العنوان: Initial and boundary blow-up problem for $p$-Laplacian parabolic equation with general absorption
المؤلفون: Wang, Mingxin, Pang, Peter Yu Hin, Chen, Yujuan
سنة النشر: 2014
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, 35K20, 35K60, 35B30, 35J25
الوصف: In this article, we investigate the initial and boundary blow-up problem for the $p$-Laplacian parabolic equation $u_t-\Delta_p u=-b(x,t)f(u)$ over a smooth bounded domain $\Omega$ of $\mathbb{R}^N$ with $N\ge2$, where $\Delta_pu={\rm div}(|\nabla u|^{p-2}\nabla u)$ with $p>1$, and $f(u)$ is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary.
Comment: 27 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1406.0989
رقم الانضمام: edsarx.1406.0989
قاعدة البيانات: arXiv