Report
Initial and boundary blow-up problem for $p$-Laplacian parabolic equation with general absorption
العنوان: | Initial and boundary blow-up problem for $p$-Laplacian parabolic equation with general absorption |
---|---|
المؤلفون: | Wang, Mingxin, Pang, Peter Yu Hin, Chen, Yujuan |
سنة النشر: | 2014 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Analysis of PDEs, 35K20, 35K60, 35B30, 35J25 |
الوصف: | In this article, we investigate the initial and boundary blow-up problem for the $p$-Laplacian parabolic equation $u_t-\Delta_p u=-b(x,t)f(u)$ over a smooth bounded domain $\Omega$ of $\mathbb{R}^N$ with $N\ge2$, where $\Delta_pu={\rm div}(|\nabla u|^{p-2}\nabla u)$ with $p>1$, and $f(u)$ is a function of regular variation at infinity. We study the existence and uniqueness of positive solutions, and their asymptotic behaviors near the parabolic boundary. Comment: 27 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1406.0989 |
رقم الانضمام: | edsarx.1406.0989 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |