Properties and numerical evaluation of the Rosenblatt distribution

التفاصيل البيبلوغرافية
العنوان: Properties and numerical evaluation of the Rosenblatt distribution
المؤلفون: Veillette, Mark S., Taqqu, Murad S.
المصدر: Bernoulli 2013, Vol. 19, No. 3, 982-1005
سنة النشر: 2013
المجموعة: Mathematics
Statistics
مصطلحات موضوعية: Mathematics - Statistics Theory
الوصف: This paper studies various distributional properties of the Rosenblatt distribution. We begin by describing a technique for computing the cumulants. We then study the expansion of the Rosenblatt distribution in terms of shifted chi-squared distributions. We derive the coefficients of this expansion and use these to obtain the L\'{e}vy-Khintchine formula and derive asymptotic properties of the L\'{e}vy measure. This allows us to compute the cumulants, moments, coefficients in the chi-square expansion and the density and cumulative distribution functions of the Rosenblatt distribution with a high degree of precision. Tables are provided and software written to implement the methods described here is freely available by request from the authors.
Comment: Published in at http://dx.doi.org/10.3150/12-BEJ421 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)
نوع الوثيقة: Working Paper
DOI: 10.3150/12-BEJ421
URL الوصول: http://arxiv.org/abs/1307.5990
رقم الانضمام: edsarx.1307.5990
قاعدة البيانات: arXiv