Bethe Ansatz solution of the small polaron with nondiagonal boundary terms

التفاصيل البيبلوغرافية
العنوان: Bethe Ansatz solution of the small polaron with nondiagonal boundary terms
المؤلفون: Karaiskos, Nikos, Grabinski, André M., Frahm, Holger
المصدر: J. Stat. Mech. (2013) P07009
سنة النشر: 2013
المجموعة: Mathematics
Condensed Matter
High Energy Physics - Theory
Mathematical Physics
مصطلحات موضوعية: Mathematical Physics, Condensed Matter - Strongly Correlated Electrons, High Energy Physics - Theory
الوصف: The small polaron with generic, nondiagonal boundary terms is investigated within the framework of quantum integrability. The fusion hierarchy of the transfer matrices and its truncation for particular values of the anisotropy parameter are both employed, so that the spectral problem is formulated in terms of a TQ equation. The solution of this equation for generic boundary conditions is based on a deformation of the diagonal case. The eigenvalues of the model are extracted and the corresponding Bethe Ansatz equations are presented. Finally, we comment on the eigenvectors of the model and explicitly compute the eigenstate of the model which evolves into the Fock vacuum when the off-diagonal boundary terms are switched off.
Comment: 24 pages, Latex; Improved presentation, an appendix and references added; Published version
نوع الوثيقة: Working Paper
DOI: 10.1088/1742-5468/2013/07/P07009
URL الوصول: http://arxiv.org/abs/1304.2659
رقم الانضمام: edsarx.1304.2659
قاعدة البيانات: arXiv
الوصف
DOI:10.1088/1742-5468/2013/07/P07009