Berry-Esseen and Edgeworth approximations for the tail of an infinite sum of weighted gamma random variables

التفاصيل البيبلوغرافية
العنوان: Berry-Esseen and Edgeworth approximations for the tail of an infinite sum of weighted gamma random variables
المؤلفون: Veillette, Mark S., Taqqu, Murad S.
سنة النشر: 2010
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability, 60E05, 60E10, 60E99
الوصف: Consider the sum $Z = \sum_{n=1}^\infty \lambda_n (\eta_n - \mathbb{E}\eta_n)$, where $\eta_n$ are i.i.d.~gamma random variables with shape parameter $r > 0$, and the $\lambda_n$'s are predetermined weights. We study the asymptotic behavior of the tail $\sum_{n=M}^\infty \lambda_n (\eta_n - \mathbb{E}\eta_n)$ which is asymptotically normal under certain conditions. We derive a Berry-Essen bound and Edgeworth expansions for its distribution function. We illustrate the effectiveness of these expansions on an infinite sum of weighted chi-squared distributions.
Comment: 19 pages, 2 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1010.3948
رقم الانضمام: edsarx.1010.3948
قاعدة البيانات: arXiv