Report
Interlacing Log-concavity of the Boros-Moll Polynomials
العنوان: | Interlacing Log-concavity of the Boros-Moll Polynomials |
---|---|
المؤلفون: | Chen, William Y. C., Wang, Larry X. W., Xia, Ernest X. W. |
سنة النشر: | 2010 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics, Mathematics - Classical Analysis and ODEs, 05A20, 33F10 |
الوصف: | We introduce the notion of interlacing log-concavity of a polynomial sequence $\{P_m(x)\}_{m\geq 0}$, where $P_m(x)$ is a polynomial of degree m with positive coefficients $a_{i}(m)$. This sequence of polynomials is said to be interlacing log-concave if the ratios of consecutive coefficients of $P_m(x)$ interlace the ratios of consecutive coefficients of $P_{m+1}(x)$ for any $m\geq 0$. Interlacing log-concavity is stronger than the log-concavity. We show that the Boros-Moll polynomials are interlacing log-concave. Furthermore we give a sufficient condition for interlacing log-concavity which implies that some classical combinatorial polynomials are interlacing log-concave. Comment: 10 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1008.0310 |
رقم الانضمام: | edsarx.1008.0310 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |