Interlacing Log-concavity of the Boros-Moll Polynomials

التفاصيل البيبلوغرافية
العنوان: Interlacing Log-concavity of the Boros-Moll Polynomials
المؤلفون: Chen, William Y. C., Wang, Larry X. W., Xia, Ernest X. W.
سنة النشر: 2010
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, Mathematics - Classical Analysis and ODEs, 05A20, 33F10
الوصف: We introduce the notion of interlacing log-concavity of a polynomial sequence $\{P_m(x)\}_{m\geq 0}$, where $P_m(x)$ is a polynomial of degree m with positive coefficients $a_{i}(m)$. This sequence of polynomials is said to be interlacing log-concave if the ratios of consecutive coefficients of $P_m(x)$ interlace the ratios of consecutive coefficients of $P_{m+1}(x)$ for any $m\geq 0$. Interlacing log-concavity is stronger than the log-concavity. We show that the Boros-Moll polynomials are interlacing log-concave. Furthermore we give a sufficient condition for interlacing log-concavity which implies that some classical combinatorial polynomials are interlacing log-concave.
Comment: 10 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1008.0310
رقم الانضمام: edsarx.1008.0310
قاعدة البيانات: arXiv