Report
Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation
العنوان: | Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation |
---|---|
المؤلفون: | Kaluzhny, U., Shamis, M. |
سنة النشر: | 2009 |
المجموعة: | Mathematics Mathematical Physics |
مصطلحات موضوعية: | Mathematics - Spectral Theory, Mathematical Physics |
الوصف: | We study self-adjoint bounded Jacobi operators of the form: (J \psi)(n) = a_n \psi(n + 1) + b_n \psi(n) +a_{n-1} \psi(n - 1) on $\ell^2(\N)$. We assume that for some fixed q, the q-variation of $\{a_n\}$ and $\{b_n\}$ is square-summable and $\{a_n\}$ and $\{b_n\}$ converge to q-periodic sequences. Our main result is that under these assumptions the essential support of the absolutely continuous part of the spectrum of J is equal to that of the asymptotic periodic Jacobi operator. This work is an extension of a recent result of S.A.Denisov. Comment: 18pp; revised version |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/0912.1142 |
رقم الانضمام: | edsarx.0912.1142 |
قاعدة البيانات: | arXiv |
ResultId |
1 |
---|---|
Header |
edsarx arXiv edsarx.0912.1142 930 3 Report report 930.141235351563 |
PLink |
https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.0912.1142&custid=s6537998&authtype=sso |
FullText |
Array
(
[Availability] => 0
)
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/0912.1142 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) ) |
Items |
Array
(
[Name] => Title
[Label] => Title
[Group] => Ti
[Data] => Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation
)
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Kaluzhny%2C+U%2E%22">Kaluzhny, U.</searchLink><br /><searchLink fieldCode="AR" term="%22Shamis%2C+M%2E%22">Shamis, M.</searchLink> ) Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2009 ) Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics<br />Mathematical Physics ) Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Spectral+Theory%22">Mathematics - Spectral Theory</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Physics%22">Mathematical Physics</searchLink> ) Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We study self-adjoint bounded Jacobi operators of the form: (J \psi)(n) = a_n \psi(n + 1) + b_n \psi(n) +a_{n-1} \psi(n - 1) on $\ell^2(\N)$. We assume that for some fixed q, the q-variation of $\{a_n\}$ and $\{b_n\}$ is square-summable and $\{a_n\}$ and $\{b_n\}$ converge to q-periodic sequences. Our main result is that under these assumptions the essential support of the absolutely continuous part of the spectrum of J is equal to that of the asymptotic periodic Jacobi operator. This work is an extension of a recent result of S.A.Denisov.<br />Comment: 18pp; revised version ) Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper ) Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/0912.1142" linkWindow="_blank">http://arxiv.org/abs/0912.1142</link> ) Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.0912.1142 ) |
RecordInfo |
Array
(
[BibEntity] => Array
(
[Subjects] => Array
(
[0] => Array
(
[SubjectFull] => Mathematics - Spectral Theory
[Type] => general
)
[1] => Array
(
[SubjectFull] => Mathematical Physics
[Type] => general
)
)
[Titles] => Array
(
[0] => Array
(
[TitleFull] => Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation
[Type] => main
)
)
)
[BibRelationships] => Array
(
[HasContributorRelationships] => Array
(
[0] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Kaluzhny, U.
)
)
)
[1] => Array
(
[PersonEntity] => Array
(
[Name] => Array
(
[NameFull] => Shamis, M.
)
)
)
)
[IsPartOfRelationships] => Array
(
[0] => Array
(
[BibEntity] => Array
(
[Dates] => Array
(
[0] => Array
(
[D] => 06
[M] => 12
[Type] => published
[Y] => 2009
)
)
)
)
)
)
)
|
IllustrationInfo |