Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation

التفاصيل البيبلوغرافية
العنوان: Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation
المؤلفون: Kaluzhny, U., Shamis, M.
سنة النشر: 2009
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematics - Spectral Theory, Mathematical Physics
الوصف: We study self-adjoint bounded Jacobi operators of the form: (J \psi)(n) = a_n \psi(n + 1) + b_n \psi(n) +a_{n-1} \psi(n - 1) on $\ell^2(\N)$. We assume that for some fixed q, the q-variation of $\{a_n\}$ and $\{b_n\}$ is square-summable and $\{a_n\}$ and $\{b_n\}$ converge to q-periodic sequences. Our main result is that under these assumptions the essential support of the absolutely continuous part of the spectrum of J is equal to that of the asymptotic periodic Jacobi operator. This work is an extension of a recent result of S.A.Denisov.
Comment: 18pp; revised version
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/0912.1142
رقم الانضمام: edsarx.0912.1142
قاعدة البيانات: arXiv
ResultId 1
Header edsarx
arXiv
edsarx.0912.1142
930
3
Report
report
930.141235351563
PLink https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.0912.1142&custid=s6537998&authtype=sso
FullText Array ( [Availability] => 0 )
Array ( [0] => Array ( [Url] => http://arxiv.org/abs/0912.1142 [Name] => EDS - Arxiv [Category] => fullText [Text] => View record in Arxiv [MouseOverText] => View record in Arxiv ) )
Items Array ( [Name] => Title [Label] => Title [Group] => Ti [Data] => Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation )
Array ( [Name] => Author [Label] => Authors [Group] => Au [Data] => <searchLink fieldCode="AR" term="%22Kaluzhny%2C+U%2E%22">Kaluzhny, U.</searchLink><br /><searchLink fieldCode="AR" term="%22Shamis%2C+M%2E%22">Shamis, M.</searchLink> )
Array ( [Name] => DatePubCY [Label] => Publication Year [Group] => Date [Data] => 2009 )
Array ( [Name] => Subset [Label] => Collection [Group] => HoldingsInfo [Data] => Mathematics<br />Mathematical Physics )
Array ( [Name] => Subject [Label] => Subject Terms [Group] => Su [Data] => <searchLink fieldCode="DE" term="%22Mathematics+-+Spectral+Theory%22">Mathematics - Spectral Theory</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Physics%22">Mathematical Physics</searchLink> )
Array ( [Name] => Abstract [Label] => Description [Group] => Ab [Data] => We study self-adjoint bounded Jacobi operators of the form: (J \psi)(n) = a_n \psi(n + 1) + b_n \psi(n) +a_{n-1} \psi(n - 1) on $\ell^2(\N)$. We assume that for some fixed q, the q-variation of $\{a_n\}$ and $\{b_n\}$ is square-summable and $\{a_n\}$ and $\{b_n\}$ converge to q-periodic sequences. Our main result is that under these assumptions the essential support of the absolutely continuous part of the spectrum of J is equal to that of the asymptotic periodic Jacobi operator. This work is an extension of a recent result of S.A.Denisov.<br />Comment: 18pp; revised version )
Array ( [Name] => TypeDocument [Label] => Document Type [Group] => TypDoc [Data] => Working Paper )
Array ( [Name] => URL [Label] => Access URL [Group] => URL [Data] => <link linkTarget="URL" linkTerm="http://arxiv.org/abs/0912.1142" linkWindow="_blank">http://arxiv.org/abs/0912.1142</link> )
Array ( [Name] => AN [Label] => Accession Number [Group] => ID [Data] => edsarx.0912.1142 )
RecordInfo Array ( [BibEntity] => Array ( [Subjects] => Array ( [0] => Array ( [SubjectFull] => Mathematics - Spectral Theory [Type] => general ) [1] => Array ( [SubjectFull] => Mathematical Physics [Type] => general ) ) [Titles] => Array ( [0] => Array ( [TitleFull] => Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation [Type] => main ) ) ) [BibRelationships] => Array ( [HasContributorRelationships] => Array ( [0] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Kaluzhny, U. ) ) ) [1] => Array ( [PersonEntity] => Array ( [Name] => Array ( [NameFull] => Shamis, M. ) ) ) ) [IsPartOfRelationships] => Array ( [0] => Array ( [BibEntity] => Array ( [Dates] => Array ( [0] => Array ( [D] => 06 [M] => 12 [Type] => published [Y] => 2009 ) ) ) ) ) ) )
IllustrationInfo