Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation

التفاصيل البيبلوغرافية
العنوان: Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square--summable variation
المؤلفون: Kaluzhny, U., Shamis, M.
سنة النشر: 2009
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematics - Spectral Theory, Mathematical Physics
الوصف: We study self-adjoint bounded Jacobi operators of the form: (J \psi)(n) = a_n \psi(n + 1) + b_n \psi(n) +a_{n-1} \psi(n - 1) on $\ell^2(\N)$. We assume that for some fixed q, the q-variation of $\{a_n\}$ and $\{b_n\}$ is square-summable and $\{a_n\}$ and $\{b_n\}$ converge to q-periodic sequences. Our main result is that under these assumptions the essential support of the absolutely continuous part of the spectrum of J is equal to that of the asymptotic periodic Jacobi operator. This work is an extension of a recent result of S.A.Denisov.
Comment: 18pp; revised version
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/0912.1142
رقم الانضمام: edsarx.0912.1142
قاعدة البيانات: arXiv