Multivariate Jacobi and Laguerre polynomials, infinite-dimensional extensions, and their probabilistic connections with multivariate Hahn and Meixner polynomials

التفاصيل البيبلوغرافية
العنوان: Multivariate Jacobi and Laguerre polynomials, infinite-dimensional extensions, and their probabilistic connections with multivariate Hahn and Meixner polynomials
المؤلفون: Griffiths, Robert C., Spanó, Dario
المصدر: Bernoulli 2011, Vol. 17, No. 3, 1095-1125
سنة النشر: 2008
المجموعة: Mathematics
Statistics
مصطلحات موضوعية: Mathematics - Probability, Mathematics - Statistics Theory
الوصف: Multivariate versions of classical orthogonal polynomials such as Jacobi, Hahn, Laguerre and Meixner are reviewed and their connection explored by adopting a probabilistic approach. Hahn and Meixner polynomials are interpreted as posterior mixtures of Jacobi and Laguerre polynomials, respectively. By using known properties of gamma point processes and related transformations, a new infinite-dimensional version of Jacobi polynomials is constructed with respect to the size-biased version of the Poisson--Dirichlet weight measure and to the law of the gamma point process from which it is derived.
Comment: Published in at http://dx.doi.org/10.3150/10-BEJ305 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)
نوع الوثيقة: Working Paper
DOI: 10.3150/10-BEJ305
URL الوصول: http://arxiv.org/abs/0809.1431
رقم الانضمام: edsarx.0809.1431
قاعدة البيانات: arXiv