Boundary of the Rauzy fractal sets in $\RR \times \CC$ generated by $P(x)=x^4-x^3-x^2-x-1$

التفاصيل البيبلوغرافية
العنوان: Boundary of the Rauzy fractal sets in $\RR \times \CC$ generated by $P(x)=x^4-x^3-x^2-x-1$
المؤلفون: Durand, Fabien, Messaoudi, Ali
سنة النشر: 2008
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, Mathematics - Combinatorics, 11B85
الوصف: We study the boundary of the 3-dimensional Rauzy fractal ${\mathcal E} \subset \RR \times \CC$ generated by the polynomial $P(x) = x^4-x^3-x^2-x-1$. The finite automaton characterizing the boundary of ${\mathcal E}$ is given explicitly. As a consequence we prove that the set ${\mathcal E}$ has 18 neighborhoods where 6 of them intersect the central tile ${\mathcal E}$ in a point. Our construction shows that the boundary is generated by an iterated function system starting with 2 compact sets.
Comment: 19 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/0807.3321
رقم الانضمام: edsarx.0807.3321
قاعدة البيانات: arXiv