Linearisation of finite abelian subgroups of the Cremona group of the plane

التفاصيل البيبلوغرافية
العنوان: Linearisation of finite abelian subgroups of the Cremona group of the plane
المؤلفون: Blanc, Jérémy
المصدر: Groups Geom. Dyn. 3 (2009), no. 2, 215-266
سنة النشر: 2007
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Algebraic Geometry, 14E07, 14E05, 14J26
الوصف: This article gives the proof of results announced in [J. Blanc, Finite Abelian subgroups of the Cremona group of the plane, C.R. Acad. Sci. Paris, S\'er. I 344 (2007), 21-26.] and some description of automorphisms of rational surfaces. Given a finite Abelian subgroup of the Cremona group of the plane, we provide a way to decide whether it is birationally conjugate to a group of automorphisms of a minimal surface. In particular, we prove that a finite cyclic group of birational transformations of the plane is linearisable if and only if none of its non-trivial elements fix a curve of positive genus. For finite Abelian groups, there exists only one surprising exception, a group isomorphic to Z/2ZxZ/4Z, whose non-trivial elements do not fix a curve of positive genus but which is not conjugate to a group of automorphisms of a minimal rational surface. We also give some descriptions of automorphisms (not necessarily of finite order) of del Pezzo surfaces and conic bundles.
Comment: 41 pages, 2 figures, is a part of the author's PHD whose full text is available at math.AG/0610368. To appear in Groups Geom. Dyn
نوع الوثيقة: Working Paper
DOI: 10.4171/GGD/55
URL الوصول: http://arxiv.org/abs/0704.0537
رقم الانضمام: edsarx.0704.0537
قاعدة البيانات: arXiv