Striatal shape alteration as a staging biomarker for Parkinson’s Disease☆

التفاصيل البيبلوغرافية
العنوان: Striatal shape alteration as a staging biomarker for Parkinson’s Disease☆
المؤلفون: PERALTA, Maxime, Baxter, John, Khan, Ali, Haegelen, Claire, Jannin, Pierre
المساهمون: Université de Rennes (UNIV-RENNES), Laboratoire Traitement du Signal et de l'Image (LTSI), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National de la Santé et de la Recherche Médicale (INSERM), Robarts Research Institute [Canada], University of Western Ontario (UWO), Fondation pour la Recherche Médicale, Université de Rennes (UR), Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM), PERALTA, Maxime
المصدر: NeuroImage : Clinical
Neuroimage-Clinical
Neuroimage-Clinical, Elsevier, 2020, 27, ⟨10.1016/j.nicl.2020.102272⟩
Neuroimage-Clinical, 2020, 27, ⟨10.1016/j.nicl.2020.102272⟩
NeuroImage: Clinical, Vol 27, Iss, Pp 102272-(2020)
Neuroimage-Clinical, Elsevier, In press
بيانات النشر: Elsevier, 2020.
سنة النشر: 2020
مصطلحات موضوعية: [INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI], Male, lcsh:Computer applications to medicine. Medical informatics, lcsh:RC346-429, [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], Morphometric biomarkers, [STAT.ML]Statistics [stat]/Machine Learning [stat.ML], Machine learning, Humans, Gray Matter, lcsh:Neurology. Diseases of the nervous system, [SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing, Aged, Putamen, Regular Article, Parkinson Disease, Middle Aged, [STAT.ML] Statistics [stat]/Machine Learning [stat.ML], Corpus Striatum, Parkinson’s disease, lcsh:R858-859.7, Staging biomarker, Female, Medical imaging, Caudate Nucleus, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing, Biomarkers
الوصف: Highlights • Subcortical shape displacement can be used as a diagnosis and staging biomarker. • Brain morphometry allows to detect pre-symptomatic Parkinson’s disease. • Putamen and caudate atrophies are differently informative. • Subcortical shape alteration is orthogonal to the clinical symptomatology. • Stacking classifier is effective to classify subcortical displacement fields.
Parkinson’s Disease provokes alterations of subcortical deep gray matter, leading to subtle changes in the shape of several subcortical structures even before the manifestation of motor and non-motor clinical symptoms. We used an automated registration and segmentation pipeline to measure this structural alteration in one early and one advanced Parkinson’s Disease (PD) cohorts, one prodromal stage cohort and one healthy control cohort. These structural alterations are then passed to a machine learning pipeline to classify these populations. Our workflow is able to distinguish different stages of PD based solely on shape analysis of the bilateral caudate nucleus and putamen, with balanced accuracies in the range of 59% to 85%. Furthermore, we compared the significance of each of these subcortical structure, compared the performances of different classifiers on this task, thus quantifying the informativeness of striatal shape alteration as a staging bio-marker for PD.
وصف الملف: application/pdf
اللغة: English
تدمد: 2213-1582
DOI: 10.1016/j.nicl.2020.102272⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=pmid_dedup__::d49ba0eabda46f6f8f1ea29965fd7af8
http://europepmc.org/articles/PMC7260673
Rights: OPEN
رقم الانضمام: edsair.pmid.dedup....d49ba0eabda46f6f8f1ea29965fd7af8
قاعدة البيانات: OpenAIRE
الوصف
تدمد:22131582
DOI:10.1016/j.nicl.2020.102272⟩