Assesing the spatial transferability of Random Forest models trained on the basis of the WSF3D dataset for cities

التفاصيل البيبلوغرافية
العنوان: Assesing the spatial transferability of Random Forest models trained on the basis of the WSF3D dataset for cities
المؤلفون: Gnana Prakash, Amita
سنة النشر: 2022
مصطلحات موضوعية: World Settlement Footprint 3D Land Use Land Cover Land Use Mapping Remote Sensing Machine Learning Spatial Transferability Random Forest Spatial metrics Structural similarity, Class separability, Similarity Measures, Urban Settlements
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=od______1640::eac176493a93999f6228123ba36c12fc
https://elib.dlr.de/186401/
Rights: OPEN
رقم الانضمام: edsair.od......1640..eac176493a93999f6228123ba36c12fc
قاعدة البيانات: OpenAIRE